perfectism's blog

物来顺应,未来不迎,当时不杂,既往不恋

0%

驾驶员动作检测综述

驾驶员动作检测综述

闵晨阳 2020.02.01

图片分类

多流融合的CNN

原文见参考文献【1】

datasets

SEU-DRIVING dataset,state-farm distracted driving dataset

Network architecture

img

Fusion strategy

img

img

img

Experiment results

state farm

img

img

SEU

img

img

多尺度注意机制CNN

原文见参考文献【2】

datasets

State-Farm,S-DA,R-DA

img

Network architecture

img

Experiment results

state farm

img

img

R-DA

img

img

S-DA

img

img

融合手脸特征的CNN

原文见参考文献【5】

datasets

AUC([5]首创)

Network architecture

img

Experiment results

img

img

视频分类

Two-Stream Inflated 3D ConvNet(I3D)

原文见参考文献【3】【4】

datasets

AUC,State Farm

经过对以上两个数据集的每一帧图片的组合得到20,094 10-frame clips for State
Farm and 14,536 10-frame clips for AUC dataset

Network architecture

img

Experiment results

img

img

img

img

img

基于空间-时间特征的CNN

原文见参考文献【6】

datasets

AUC ,Brain4Cars

Network architecture

img

img

数据融合:通过每一帧图片后增加几帧光流来联系“连续几帧图片”

融合后的四帧数据输入带有Softmax层(批量归一化层)的inception网络,每一帧结果融合后经过softmax层输出预测结果

Experiment results

img

img

img

img

多类型细粒度Drive&Act数据集

原文见参考文献【7】

datasets

https://www.driveandact.com/

img

img

35

36

37

Experiment results

Mid-Level

img

Action-Object-Location

39

Long-running Task

40

多类型数据融合的结果

41

参考文献

【1】Hu Y, Lu M, Lu X, et al. Driving behaviour recognition from still images by using multi-stream fusion CNN[J]. machine vision applications, 2019, 30(5): 851-865.

【2】Hu Y, Lu M, Lu X, et al. Feature refinement for image-based driver action recognition via multi-scale attention convolutional neural network[J]. Signal Processing-image Communication, 2020.

【3】Moslemi N, Azmi R, Soryani M, et al. Driver Distraction Recognition using 3D Convolutional Neural Networks[C]. international conference on pattern recognition, 2019.

【4】 J. Carreira and A. Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

【5】Abouelnaga Y, Eraqi H M, Moustafa M, et al. Real-time Distracted Driver Posture Classification.[J]. arXiv: Computer Vision and Pattern Recognition, 2017.

【6】Kose N, Kopuklu O, Unnervik A, et al. Real-Time Driver State Monitoring Using a CNN Based Spatio-Temporal Approach*[C]. international conference on intelligent transportation systems, 2019.

【7】Martin M, Roitberg A, Haurilet M, et al. Drive&Act: A Multi-Modal Dataset for Fine-Grained Driver Behavior Recognition in Autonomous Vehicles[C]. international conference on computer vision, 2019: 2801-2810.